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Abstract
A scheme is proposed for realizing quantum entanglement, information transfer,
CNOT gates, and SWAP gates with superconducting-quantum-interference-
device (SQUID) qubits in cavity QED. In the scheme, the two logical states of
a qubit are the two lowest levels of the SQUID. An intermediate level of the
SQUID is utilized to facilitate coherent control and manipulation of quantum
states of the qubits. The method presented here does not involve a real excitation
of the intermediate levels during the operations. Thus, decoherence due to
energy relaxation of intermediate levels is minimized. In addition, the present
method does not require the adjustment of the SQUID level spacings, which
simplifies the operation significantly.

Cavity QED has been extensively studied to implement quantum information processing
(QIP) with a variety of physical systems such as atoms, ions, quantum dots and Josephson
junctions [1–5]. A well-known reason for this is that compared with those non-cavity proposals
where significant overhead is needed for coupling distant qubits, cavity-based schemes are
preferable since the cavity mode acts as a ‘bus’ that can mediate long-range fast interaction
between any qubits, which enables one to perform two-qubit operations involving any desired
pair of qubits.

Recently, a scheme has been proposed for obtaining quantum gates, information transfer,
and entanglement with superconductor quantum interference devices (SQUIDs) in cavity
QED [6]. The SQUID-cavity QED scheme may be among the most promising candidates
for demonstrating QIP because

(i) the cavity mode can mediate long-range and fast interaction between distant SQUID qubits,
(ii) decoherence induced due to the external environment can be greatly suppressed since the

cavity can be doubled as the magnetic shield for SQUIDs, and
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Figure 1. (a) The potential and level diagram of an rf SQUID with a�-type three levels |0〉, |1〉 and
|a〉. The cavity field is detuned from the classical microwave pulse by δ = �c−�µw . (b) Illustration
of single-qubit operation. The two microwave pulses a and b with frequencies ωa

µw and ωb
µw are

applied to induce a two-photon Raman resonant transition between the qubit levels |0〉 and |1〉 with
ω10 = ωa

µw −ωb
µw , for the purpose of single-qubit logic operation. To have the intermediate level

|a〉 not populated during the operation, the setting� = ωa0 −ωa
µw = ωb0 −ωb

µw � �a,�b should
be met, where �a (�b) is the Rabi flopping frequency between the levels |0〉 and |a〉 (the levels |1〉
and |a〉) generated by the pulse a (b).

(iii) superconducting qubits have been demonstrated to have relatively long decoherence
time [7–9].

In [6], the operations were performed by inducing transitions to the intermediate level |a〉
(see figure 1(a)) via microwave pulse and cavity field. However, though the cavity mode is
not populated during the operation, the population of the SQUIDs in the intermediate levels
is non-zero. Thus, energy relaxation of the intermediate level can cause decoherence during
the operation. Another key point is that the operation in [6] requires rapid adjustments of
level spacings of SQUIDs, which is undesirable in experiment, since tuning the SQUID level
spacings not only makes the operation more complicated but also may cause extra decoherence.
In addition, the proposal in [6] employed the resonant coupling of the microwave pulses with
the SQUIDs; therefore one needs a precise control of the qubits’ level spacings in order to
match the microwave frequency.

In this paper, we propose a significantly improved approach to achieve entanglement,
information transfer, CNOT gates, and SWAP gates with three-level�-type SQUID qubits in
cavity QED. As shown below, the above-mentioned problems in [6] are all mitigated in the
present proposal.

Let us first introduce the Hamiltonian of a SQUID qubit coupled to a single-mode cavity
field and a classical microwave pulse with Bµw(r, t) = Bµw(r) cos ωµwt . Here, Bµw(r) is the
amplitude of the magnetic component andωµw is the carrier frequency. The qubits considered
in this paper are rf SQUIDs each consisting of a Josephson tunnel junction in a superconducting
loop (the typical size of an rf SQUID is of the order of 10–100µm). The Hamiltonian of an rf
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SQUID (with junction capacitance C and loop inductance L) can be written in the usual form

Hs = Q2

2C
+
(�−�x)

2

2L
− EJ cos

(
2π

�

�0

)
, (1)

where �, the magnetic flux threading the ring, and Q, the total charge on the capacitor, are
the conjugate variables of the system (with the commutation relation [�, Q] = ih̄), �x is the
static (or quasistatic) external flux applied to the ring, and EJ ≡ Ic�0/2π is the maximum
Josephson coupling energy (Ic is the critical current of the junction and�0 = h/2e is the flux
quantum).

The quantized Hamiltonian of the cavity mode is given by Hc = h̄ωc(c+c +1/2), where c+

and c are the photon creation and annihilation operators, and ωc is the frequency of the cavity
mode.

Consider a �-type configuration formed by the two lowest levels and an excited level of
the SQUID, denoted by |0〉, |1〉 and |a〉 with energy eigenvalues E0, E1, and Ea , respectively
(figure 1(a)). For the sake of concreteness, we choose the following device and control
parameters: C = 90 fF, L = 100 pH, Ic = 3.75 µA, �x = 0.4995�0 for the SQUID
qubit in the rest of this paper. We can show that when the cavity mode is coupled to the
|0〉 ↔ |a〉 transition but far-off resonant with the |0〉 ↔ |1〉 and |1〉 ↔ |a〉 transitions, and
when the microwave pulse is coupled to the |1〉 ↔ |a〉 transition while far-off resonant with
the |0〉 ↔ |1〉 and |0〉 ↔ |a〉 transitions, the Hamiltonian of the system can be written as

H = E0σ00 + E1σ11 + Eaσaa + h̄ωcc+c + h̄(gc+σ0a + h.c.) + h̄(�eiωµw tσ1a + h.c.), (2)

where g is the coupling constant between the cavity mode and the |0〉 ↔ |a〉 transition, �
is the Rabi-flopping frequency corresponding to the |1〉 ↔ |a〉 transition, and σi j = |i〉〈 j |
(i, j = 0, 1, a). The expressions of g and � are given by

g = 1

L

√
ωc

2µ0h̄
〈0|�|a〉

∫
S

Bc(r) · dS,

� = 1

2Lh̄
〈1|�|a〉

∫
S

Bµw(r) · dS,
(3)

where S is any surface that is bounded by the SQUID ring, r is the position vector on S, and
Bc(r) is the magnetic component of the normal mode of the cavity. For a standing-wave cavity,

one has Bc(z) = µ0

√
2
V cos kz (here, k is the wavenumber, and V and z are the cavity volume

and the cavity axis, respectively).
Consider a situation in which the cavity mode is largely detuned from the |0〉 ↔ |a〉

transition, i.e., �c = ωa0 − ωc � g, and the microwave pulse is largely detuned from
the |1〉 ↔ |a〉 transition, i.e., �µw = ωa1 − ωµw � �, where ωa0 = (Ea − E0)/h̄ and
ωa1 = (Ea − E1)/h̄ (figure 1(a)). Under this condition, the intermediate level |a〉 can be
adiabatically eliminated [10, 11]. Thus, the effective Hamiltonian in the interaction picture
becomes [10, 11]

Hi = h̄

[
− g2

�c
c+cσ00 − �2

�µw

σ11 − geffe
iδt cσ +

01 − geffe
−iδt c+σ01

]
, (4)

where σ01 = |0〉〈1|, σ +
01 = |1〉〈0|, δ = �c −�µw, and geff = �g

2 (
1
�c

+ 1
�µw

). The first two terms
are ac-Stark shifts of the levels |0〉 and |1〉 induced by the cavity mode and the microwave pulse,
respectively. The last two terms are the familiar Jaynes–Cummings interaction, describing the
Raman coupling of the two lowest levels of the SQUID.

The effective Hamiltonian for two SQUID qubits in cavity. To simplify presentation, let
us consider two identical SQUIDs I and II (the method is also applicable to non-identical



1910 C-P Yang et al

Y
X

Z

    

I I I

Microwave                                    Microwave                    

Φ Φx x

Figure 2. A schematic illustration of two SQUIDs (I, II) coupled to a single-mode cavity field and
manipulated by microwave pulses. The two SQUIDs are placed along the cavity axis (the Z axis)
and in the X–Z plane. Bc, BI

µw and BII
µw are in Y direction.

SQUIDs). The two SQUIDs are coupled to the same single-mode microwave cavity and each
is driven by a classical microwave pulse Bi

µw(r, t) = Bi
µw(r) cos ωµwt (i = I, II) (figure 2).

The separation of the two SQUIDs is assumed to be much larger than the linear dimension of
each SQUID ring in such a way that direct interaction between the two SQUIDs is negligible.
Also, suppose that the coupling of each SQUID to the cavity mode is the same (this can be
readily obtained by placing the two squbits at two locations r1 and r2 of the cavity axis where
the magnetic fluxes generated by the cavity field are the same). In this case, it is obvious that
based on equation (4), the Hamiltonian for the system in the interaction picture can be written
as

HI =
∑
i=I,II

h̄

[
− g2

�c
c+cσ00i − �2

�µw

σ11i

]
− h̄

∑
i=I,II

[geffeiδt cσ +
01i + geffe−iδt c+σ01i ]. (5)

Under the condition that δ � g2

�c
, �2

�µw
, geff , there is no exchange of energy between the SQUIDs

and the cavity mode. The effective Hamiltonian is then given by [12–15]

Heff =
∑
i=I,II

h̄

[
− g2

�c
c+cσ00i − �2

�µw

σ11i

]

+ h̄γ

[∑
i=I,II

−c+cσ00i + cc+σ11i + σ +
01Iσ01II + σ01Iσ

+
01II

]
, (6)

where the third and fourth terms describe the photon-number dependent Stark shifts induced
by the off-resonant Raman coupling, and the last two terms describe the ‘dipole’ coupling
between the two SQUIDs mediated by the cavity mode and the classical fields. The parameter
γ = g2

eff/δ characterizes the strength of the Stark shift and inter-qubit coupling. If the cavity
is initially in the vacuum state, then the effective Hamiltonian reduces to

Heff = −
∑
i=I,II

h̄
�2

�µw

σ11i + h̄γ

[ ∑
i=I,II

σ11i + σ +
01Iσ01II + σ01Iσ

+
01II

]
. (7)

Note that the Hamiltonian (7) does not contain the operators of the cavity mode. Thus, only the
state of the SQUID system undergoes an evolution under the Hamiltonian (7), i.e., no quantum
information transfer occurs between the SQUIDs and the cavity mode. Therefore, the cavity
mode is virtually excited.
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The Hamiltonian (7) acting on the system can be expressed through the unitary
transformation

U(t > 0) =



1 0 0 0
0 e−iγ ′ t cos(γ t) −ie−iγ ′t sin(γ t) 0
0 −ie−iγ ′t sin(γ t) e−iγ ′ t cos(γ t) 0
0 0 0 e−i2γ ′ t


 (8)

in the two-qubit computational subspace {|00〉, |01〉, |10〉, |11〉}, where γ ′ = γ − �2

�µw
. In the

following, based on equation (8) we show how quantum entanglement, information transfer,
and SWAP gates can be achieved.

The generation of entanglement. The two logical states of each SQUID qubit are
represented by the two lowest energy states |0〉 and |1〉. From (8), one can see that if the
two SQUID qubits are initially in the states |0〉I and |1〉II, they will evolve to the following
maximally entangled state after an interaction time π/(4γ ):

|ψ〉 = 1√
2
(|0〉I|1〉II − i |1〉I|0〉II), (9)

where the common phase factor e−iχπ/4 (χ = γ ′/γ ) has been omitted.
Quantum information transfer. Suppose that the SQUID qubit I is the original carrier of

quantum information, which is in an arbitrary state α|0〉 + β|1〉. The quantum information
transfer from the qubit I to the qubit II initially in the state |0〉 is described by

(α|0〉I + β|1〉I)|0〉II → |0〉I(α|0〉II + β|1〉II), (10)

which can be easily realized via only two steps. First, apply two microwave pulses to the two
SQUIDs I and II, respectively, so that the states of the two SQUIDs undergo an evolution under
the Hamiltonian (7) for an interaction time π/(2γ ). Then, perform a single-qubit phase shift
|0〉 → e−i(1+χ)π/4|0〉 while |1〉 → ei(1+χ)π/4|1〉 on the SQUID qubit II. The states after each
step of the operations are listed below:

(α|0〉I + β|1〉I)|0〉II
Step (i)−→ |0〉I[α|0〉II + e−i(1+χ)π/2β|1〉II]

Step (ii)−→ e−i(1+χ)π/4|0〉I(α|0〉II + β|1〉II). (11)

It is clear that the two-step operation transfers quantum information from the SQUID qubit I
to the SQUID qubit II.

Single SQUID qubit operations can be achieved without real excitation of the intermediate
level |a〉, by applying two microwave pulses a and b with Bk

µw(r, t) = Bk
µw(r) cos(ωk

µwt +φk)

(k = a, b) in order to induce two-photon Raman resonant transition between the qubit levels
|0〉 and |1〉 (figure 1(b)). During the single-qubit operation, the cavity mode can be decoupled
from the qubits without adjusting the squbits’ level spacings. The reason for this is that one can
choose the frequencies of the applied microwave pulses so that the two-photon Raman resonant
transition between the qubit levels |0〉 and |1〉 is satisfied, while the cavity mode is highly
detuned from either pulse (see figure 1(b)). In the case when �a = �b, or δ� 	 �a�b/�

(here, δ� = �a −�b and � = �a +�b
2 ), the single-qubit rotation can be realized as follows:

|0〉 → cos g′t|0〉 + e−i(φa−φb−π/2) sin g′t|1〉,
|1〉 → ei(φa−φb+π/2) sin g′t|0〉 + cos g′t|1〉, (12)

where g′ = �a�b/�, and �a (�b) is the Rabi flopping frequency between the levels |0〉 and
|a〉 (the levels |1〉 and |a〉) generated by the pulse a (b).

From (12), one can see that the above single-qubit phase shift |0〉 → e−i(1+χ)π/4|0〉 and
|1〉 → ei(1+χ)π/4|1〉 can be realized in the following two steps.
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Step (i). Apply two microwave pulses a and b to the SQUID with a phase difference
δφ = φa − φb = (1 + χ)π/4, so that the states of the SQUID qubit undergo an evolution
under (12) for an interaction time t1 = π/(2g′).

Step (ii). Apply two microwave pulses a and b to the SQUID with φa − φb = π , so that the
states of the SQUID qubit undergo an evolution under (12) for another interaction time
t2 = t1 = π/(2g′).

The states after each step of the above operation are summarized below.

|0〉
|1〉

Step (i)−→ e−i(δφ−π/2)|1〉
ei(δφ+π/2)|0〉

Step (ii)−→ e−iδφ |0〉
eiδφ |1〉, (13)

which implies that the operations described above achieve a single-qubit phase shift |0〉 →
e−iδφ |0〉 and |1〉 → eiδφ |1〉 with a phase δφ = (1 + χ)π/4.

The quantum CNOT gate. A non-trivial and universal two-qubit controlled NOT (CNOT)
gate can be realized by combining two-qubit operations with single-qubit operations. We find
that the CNOT gate |i〉I| j〉II → |i〉I|i ⊕ j〉II (i, j ∈ {0, 1}) acting on the two SQUID qubits I
and II can be achieved through the following unitary transformations:

UCNOT = H−1
II UIUIISISIIUI,IIU

′
ISIIUI,II HII HIHII, (14)

where the common phase factor e−iχπ/4 is omitted, the subscripts I and II represent qubits I
and II, UI,II is a two-SQUID-qubit joint unitary operation defined by (8) with t = π/(4γ ),
SI and SII are both single-qubit phase-shift operations each resulting in |0〉 → e−iχπ/8|0〉 and
|1〉 → eiχπ/8|1〉, UI = H −1

I HI,UII = H −1
II H−1

II , and U ′
I = σyISI (σy is the Pauli operator). In

the above, H,H−1, H , and H −1 are the following Hadamard transformations:

H = 1√
2

(
1 −1
1 1

)
, H = 1√

2

(
1 −i
−i 1

)
, HH−1 = H H−1 = I (15)

in the single-qubit Hilbert subspace formed by |0〉 = (0, 1)T and |1〉 = (1, 0)T. It is
straightforward to show that with a proper choice of φa , φb, and t , the four basic single-qubit
Hadamard transformations can be obtained from the above single-qubit rotation (12).

The quantum SWAP gate. It is known that constructing a SWAP gate requires at least
three CNOT gates as follows [16]:

|i〉I| j〉II → |i〉I|i ⊕ j〉II

→ |i ⊕ (i ⊕ j)〉I|i ⊕ j〉II = | j〉I|i ⊕ j〉II

→ | j〉I| (i ⊕ j)⊕ j〉II = | j〉I|i〉II, (16)

where i, j ∈ {0, 1} and all additions are done modulo 2. As described above, a CNOT requires
10 single-qubit operations and 2 two-qubit operations. Thus, at least 36 basic operations for
three CNOT gates are needed to implement a two-SQUID-qubit SWAP gate by using the above
method. In the following discussion we present a simple way to perform a SWAP.

Note that the information transfer (10) is equivalent to a transformation |i〉I|0〉II → |0〉I|i〉II

(i ∈ {0, 1}). Thus, a two-SQUID-qubit SWAP |i〉I| j〉II → | j〉I|i〉II (i, j ∈ {0, 1}) can be
realized through the following procedure:

|i〉I| j〉II|0〉a → |0〉I| j〉II|i〉a → | j〉I|0〉II|i〉a → | j〉I|i〉II|0〉a, (17)

i.e., transfer information first from qubit I to the auxiliary qubit a; then from qubit II to qubit
I; and finally, from the auxiliary qubit a to qubit II. The irrelevant qubit in each step can be
decoupled from the cavity field and the other two qubits by turning off the microwave pulse
directed to it. As described above, the information transfer from one qubit to another only
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needs one two-qubit operation plus two basic single-qubit operations for realizing a single-
qubit phase-shift. Thus, nine basic operations are sufficient to construct a two-SQUID-qubit
SWAP gate.

It is necessary to give a brief description of the experimental parameters. For the SQUIDs
with the parameters given above and with the junction’s damping resistance R > 1 G� [17],
the level |a〉’s energy relaxation time T1 � R

60 M� µs would be ∼15 µs. The transition
frequency is ωa0/(2π) � 30 GHz. Hence, we choose ωc/(2π) = 29.7 GHz as the cavity-
mode frequency. For a superconducting standing-wave cavity with a volume 10 × 1 × 1 mm3

and a SQUID with a 50 × 50 µm2 loop located at one of the antinodes of the B field, the
coupling constant can be calculated using equation (3), which gives g � 1.8 × 108 s−1, i.e.,
about 0.1�c. By choosing the frequency and amplitude of the microwave pulse appropriately
such that�µw = 10 � and g = 1.2 � for each SQUID, we have δ � 10geff � 3.1 × 108 s−1,
i.e., γ = g2

eff/δ � 3.1 × 106 s−1. Then the time needed for creating the entangled
state (9) or the typical SQUID-cavity interaction time (the time for each two-SQUID-qubit
joint operation) required for a CNOT gate is Ts−c = π/(4γ ) � 0.25 µs, and the typical
SQUID-cavity interaction time needed for quantum information transfer or a SWAP gate is
T ′

s−c = π/(2γ ) � 0.5 µs; these are much shorter than the level |a〉’s effective decay time
T1/Pa � 1.5 × 103 µs for T1 = 15 µs, where Pa � 0.01 is the occupational probability
of the level |a〉 for the present case. The photon lifetime is given by Tc = Qc/ωc, where
Qc is the quality factor of the cavity. In the present case, the cavity has a probability
Pc � 0.01 of being excited during the operation. Thus, the effective decay time of the cavity is
Tc/Pc � 10 µs � Ts−c, T ′

s−c for Qc = 2 × 104, which is realizable for superconducting
microwave cavities since recent experiments have demonstrated that the quality factor of
microwave cavities loaded with thin film superconducting circuits (on single crystal Si or
MgO substrates) are greater than 104 [7–9, 18], and a superconducting microwave cavity with
a Q > 106 has been also reported more recently [19].

In addition to the advantages of the scheme described in [6], i.e., virtual excitation of the
cavity mode and no tunnelling between the qubit levels |0〉 and |1〉 being needed, the present
scheme has the following distinct features.

(i) During the operation, the intermediate level is virtually excited, and thus the operation
errors caused by energy relaxation are greatly suppressed.

(ii) No adjustment of level spacings is needed during operation, since the qubit–qubit
interaction required for the two-qubit operation is via the cooperative actions of the cavity
mode and the microwave pulses.

(iii) The method does not require two SQUIDs with identical parameters, since in the
case of non-identical SQUIDs I and II, one has δI = ωI

a0 − ωI
a1 − ωc + ωI

µw and
δII = ωII

a0 −ωII
a1 −ωc +ωII

µw , which can always be set to equal by adjusting the frequencies,
ωI
µw and ωII

µw, of the two microwave pulses applied to the SQUIDs. Thus, the present
scheme can allow finite device parameter non-uniformity.

(iv) The method could be extended to perform QIP on many SQUID qubits in a cavity. In the
present case, SQUID qubits are chosen by the application of the microwave pulses, i.e.,
those SQUIDs which are unaddressed by the microwave pulses are not involved in the
operation. However, in the scheme of [6], one has to adjust SQUID level spacings to have
SQUID qubits to be coupled or decoupled.

Before we conclude, we should mention that coupling qubits via cavity/trap-assisted
collision without real excitation of the cavity/vibrational mode was previously reported in [15]
and that the type of effective Hamiltonian (6) or (7), obtained after the adiabatic elimination
of both the excited states of the SQUIDs and the cavity mode, was proposed previously for a
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trapped-ion based quantum processor [15] or atom–cavity based quantum processor [12, 13].
However, we point out that the main purpose of this work is to show that the same interaction
model can be obtained in a solid-state system in which the qubits are embodied by rf SQUIDs.
We think that this result is interesting by itself as a consequence of the analogy between a
superconducting qubit and an atom/ion under proper conditions.

In summary, we have proposed a theoretical method for realizing quantum entanglement,
information transfer, CNOT gates, and SWAP gates with SQUID qubits in a cavity. It is shown
that the approach is robust against important sources of decoherence due to energy relaxation
of the intermediate level. We stress that in all the above analysis, all Stark shift terms, which
might affect the operation fidelity, are included. In addition, we have shown that a realization
of the scheme is possible within the present technique. To the best of our knowledge, there
has been no experimental demonstration of entanglement, information transfer or logical gates
for SQUID systems. Therefore, we hope that this work will stimulate further theoretical and
experimental activities in this emerging research field.
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